4.8 Article

Functional Consequences of 17q21.31/WNT3-WNT9B Amplification in hPSCs with Respect to Neural Differentiation

Journal

CELL REPORTS
Volume 10, Issue 4, Pages 616-632

Publisher

CELL PRESS
DOI: 10.1016/j.celrep.2014.12.050

Keywords

-

Categories

Funding

  1. IRP of NIDA, NIH

Ask authors/readers for more resources

Human pluripotent stem cell (hPSC) lines exhibit repeated patterns of genetic variation, which can alter in vitro properties as well as suitability for clinical use. We examined associations between copy-number variations (CNVs) on chromosome 17 and hPSC mesodiencephalic dopaminergic (mDA) differentiation. Among 24 hPSC lines, two karyotypically normal lines, BG03 and CT3, and BG01V2, with trisomy 17, exhibited amplification of the WNT3/WNT9B region and rapid mDA differentiation. In hPSC lines with amplified WNT3/WNT9B, basic fibroblast growth factor (bFGF) signaling through mitogen-activated protein kinase (MAPK)/ERK amplifies canonical WNT signaling by phosphorylating LRP6, resulting in enhanced undifferentiated proliferation. When bFGF is absent, noncanonical WNT signaling becomes dominant due to upregulation of SIAH2, enhancing JNK signaling and promoting loss of pluripotency. When bFGF is present during mDA differentiation, stabilization of canonical WNT signaling causes upregulation of LMX1A and mDA induction. Therefore, CNVs in 17q21.31, a hot spot for genetic variation, have multiple and complex effects on hPSC cellular phenotype.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available