4.7 Article

Role of Central Nervous System Periostin in Cerebral Ischemia

Journal

STROKE
Volume 43, Issue 4, Pages 1108-U341

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/STROKEAHA.111.636662

Keywords

periostin; ischemia; neuroprotection; extracellular matrix; neurite outgrowth

Funding

  1. Takeda Science Foundation
  2. Japan Heart Foundation/Novartis
  3. Grants-in-Aid for Scientific Research [24659349, 22390145, 23390187] Funding Source: KAKEN

Ask authors/readers for more resources

Background and Purpose-Although periostin, an extracellular matrix glycoprotein, plays pivotal roles in survival, migration, and regeneration in various cells, its expression and function in the brain are still unknown. Here, we investigated the expression and role of periostin in the ischemic brain. Methods-Expression of full-length periostin (periostin 1 [Pn1]) and its splicing variant lacking exon 17 (periostin 2 [Pn2]) was examined by real-time reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemical staining in male C57BL6/J mice. The actions of periostin were examined in adult primary neuronal culture and in a transient middle cerebral artery occlusion (tMCAo) model. Results-Expression of Pn2, but not of Pn1, mRNA was markedly changed after tMCAo. Pn2 mRNA was decreased in the ischemic core at 3 hours after ischemia. At 24 hours, Pn2 mRNA was significantly increased in both the peri-ischemic and ischemic regions. Periostin was mainly observed in neurons in normal brain. However, neuronal expression of periostin was decreased temporarily in the ischemic region, but increased in astrocytes and around endothelial cells at 24 hours after tMCAo. Of importance, intracerebroventricular injection of Pn2 resulted in a significant reduction in infarct volume at 24 hours after tMCAo associated with phosphorylation of Akt. Also, the Pn2-treated mice survived longer until 1 week after tMCAo. Pn2 significantly inhibited neuronal death under hypoxia and stimulated neurite outgrowth. Conclusions-Here, we demonstrated that periostin was expressed in the brain, and exogenous Pn2 exhibited neuroprotective effects and accelerated neurite outgrowth. Additional studies on periostin may provide new insights into the treatment of ischemic stroke. (Stroke. 2012;43:1108-1114.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available