4.7 Article

Protecting against cerebrovascular injury - Contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia

Journal

STROKE
Volume 39, Issue 9, Pages 2538-2543

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/STROKEAHA.108.514927

Keywords

baicalein; blood-brain barrier; edema; endothelial cell; lipoxygenase

Funding

  1. National Institutes of Health [R01NS049430, R01NS53560, P01NS555104]
  2. American Heart Association

Ask authors/readers for more resources

Background and Purpose-The concept of the neurovascular unit suggests that effects on brain vasculature must be considered if neuroprotection is to be achieved in stroke. We previously reported that 12/15-lipoxygenase (12/15-LOX) is upregulated in the peri-infarct area after middle cerebral artery occlusion in mice, and 12/15-LOX contributes to brain damage after ischemia-reperfusion. The current study was designed to investigate 12/15-LOX involvement in vascular injury in the ischemic brain. Methods-In cell culture, a human brain microvascular endothelial cell line was subjected to either hypoxia or H2O2-induced oxidative stress with or without lipoxygenase inhibitors. For in vivo studies, mice were subjected to 90 minutes middle cerebral artery occlusion, and the effects of either 12/15-LOX gene knockout or treatment with lipoxygenase inhibitors were compared. Expression of 12/15-LOX and claudin-5 as well as extravasation of immunoglobulin G were detected by immunohistochemistry. Edema was measured as water content of brain hemispheres according to the wet-dry weight method. Results-Brain endothelial cells were protected against hypoxia and H2O2 by the lipoxygenase inhibitor baicalein. After focal ischemia, 12/15-LOX was increased in neurons and endothelial cells. The vascular tight junction protein claudin-5 underwent extensive degradation in the peri-infarct area, which was partially prevented by the lipoxygenase inhibitor baicalein. Leakage of immunoglobulin G into the brain parenchyma was significantly reduced in 12/15-LOX knockout mice as well as wild-type mice treated with baicalein. Likewise, brain edema was significantly ameliorated. Conclusion-12/15-LOX may contribute to ischemic brain damage not just by causing neuronal cell death, but also by detrimental effects on the brain microvasculature. 12/15-LOX inhibitors may thus be effective as both neuroprotectants and vasculoprotectants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available