4.3 Review

Allopregnanolone and suppressed hypothalamo-pituitary-adrenal axis stress responses in late pregnancy in the rat

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/10253890.2010.482628

Keywords

Brainstem; corticotropin-releasing hormone; endogenous opioids; noradrenaline; paraventricular nucleus; proenkephalin-A

Funding

  1. Biotechnology and Biological Sciences Research Council (BBSRC)

Ask authors/readers for more resources

In rats, late pregnancy is associated with suppressed hypothalamo-pituitary-adrenal (HPA) axis responses to a variety of stressful stimuli. The result is reduced corticosterone secretion following stress, which is considered to give some protection to the fetuses from adverse glucocorticoid programming and limits the catabolic effect of corticosterone, hence minimizing maternal energy expenditure. We have used a model of immune challenge in which systemic administration of the cytokine, interleukin-1 beta (IL-1 beta), allows study of the mechanisms underlying HPA axis hyporesponsiveness in late pregnancy. Suppressed responsiveness of parvocellular paraventricular nucleus (pPVN) corticotropin-releasing hormone neurons, and hence the HPA axis, following IL-1 beta in late pregnancy is evidently explained by presynaptic inhibition of noradrenaline release in the pPVN, owing to increased endogenous opioid peptide enkephalin production in brainstem nucleus tractus solitarii neurons. Allopregnanolone, a neurosteroid metabolite of progesterone, signals the pregnancy status of the animal to the brain and stimulates opioid production in the brainstem. In this review, we discuss the supporting evidence for these mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available