4.7 Article

Comparison between Shannon and Tsallis entropies for prediction of shear stress distribution in open channels

Journal

Publisher

SPRINGER
DOI: 10.1007/s00477-014-0959-3

Keywords

Entropy; Open channel; Sediment; Wall; Bed

Ask authors/readers for more resources

The concept of Tsallis entropy was applied to model the probability distribution functions for the shear stress magnitudes in circular channels (with filling ratios of 0.506, 0.666, 0.826), circular with flat bed (filling ratios of 0.333, 0.666), rectangular channel (1.34, 2, 3.94, 7.37 aspect ratios) and compound channel (with relative depths of 0.324, 0.46). The equation for the shear stress distribution was obtained according to the entropy maximization principle, and is able to estimate the shear stress distribution as much on the walls as the channel bed. The approach is also compared with the predictions obtained based on the Shannon entropy concept. By comparing the two prediction models, this study highlights the application of Tsallis entropy to estimate the shear stress distribution of open channels. Although the results of the two models are similar in the circular cross-section, the differences between them are more significant in circular with flat bed and rectangular channels. For a wide range of filling ratio values, experimental data are used to illustrate the accuracy and reliability of the proposed model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available