4.2 Article Proceedings Paper

Interplay of estrogen receptors and GPR30 for the regulation of early membrane initiated transcriptional effects: A pharmacological approach

Journal

STEROIDS
Volume 77, Issue 10, Pages 943-950

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.steroids.2011.11.005

Keywords

Estrogen receptors; GPR30; Breast cancer

Ask authors/readers for more resources

Estrogens exert their effect through ER alpha and ER beta intracellular transcription factors and rapid, usually membrane-initiated receptors, influencing cytosolic signaling and transcription. The nature of extranuclear estrogen elements has not been elucidated so far; classical or alternatively transcribed ER isoforms (ER alpha 36, ER alpha 46) anchored to the plasma membrane and GPR30 (GPER1) have been reported to exert early estrogen actions. Here, we used E2-BSA, an impermeable estradiol analog for a transcriptome analysis in four GREP1 positive breast cancer cell lines with different estrogen receptor profiles (T47D, MCF-7, MDA-MB-231 and SKBR3) in order to evaluate GPER1 transcriptional effects. Early effects of E2-BSA were assayed after 3 h of incubation, in the absence/presence of ICI182,780 (ER-inhibitor) or G15 (GREP1-specific inhibitor). E2-BSA specifically modified 277-549 transcripts in the different cell lines. Two different clusters of transcripts could be identified: (1) the majority of transcripts were inhibited by both ICI182,780 and G15, suggesting an interaction of E2-BSA with a common ER-related element, or a direct ER-GPER1 interaction; (2) a small number of G15-only modified transcripts, in two cell lines (T47D and SKBR3 cells), indicative of specific GPER1-related effects. The latter transcripts were significantly related to pathways including FOXA2/FOXA3 transcription factor networks, RNA-Polymerases Transcription Regulation and lipid metabolism, while ICI/G15 inhibited transcripts affected pathways related to apoptosis, erythropoietin signaling, metabolic effects through the citric acid cycle, IL-4 and IL-5 mediated events and homologous DNA recombination. Finally, we review the current literature of GPER1 actions, in view of our results of ER-dependent and independent GPER1-modified pathways. (c) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available