4.5 Article

Chromatin Insulator Elements Block Transgene Silencing in Engineered Human Embryonic Stem Cell Lines at a Defined Chromosome 13 Locus

Journal

STEM CELLS AND DEVELOPMENT
Volume 21, Issue 2, Pages 191-205

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/scd.2011.0163

Keywords

-

Funding

  1. Life Technologies Corporation
  2. California Institute for Regenerative Medicine Tools and Technology [RT1-011071]
  3. Juvenile Diabetes Research Foundation [3-2008-477, 35-2008-628]
  4. California Institute for Regenerative Medicine [TR-1250]
  5. Hartwell Individual Biomedical Investigator Award
  6. NIH/NICHD [2K12 HD001259-11]

Ask authors/readers for more resources

Lineage reporters of human embryonic stem cell (hESC) lines are useful for differentiation studies and drug screening. Previously, we created reporter lines driven by an elongation factor 1 alpha (EF1 alpha) promoter at a chromosome 13q32.3 locus in the hESC line WA09 and an abnormal hESC line BG01V in a site-specific manner. Expression of reporters in these lines was maintained in long-term culture at undifferentiated state. However, when these cells were differentiated into specific lineages, reduction in reporter expression was observed, indicating transgene silencing. To develop an efficient and reliable genetic engineering strategy in hESCs, we used chromatin insulator elements to flank single-copy transgenes and integrated the combined expression constructs via PhiC31/R4 integrase-mediated recombination technology to the chromosome 13 locus precisely. Two copies of cHS4 double-insulator sequences were placed adjacent to both 5' and 3' of the promoter reporter constructs. The green fluorescent protein (GFP) gene was driven by EF1 alpha or CMV early enhancer/chicken beta actin (CAG) promoter. In the engineered hESC lines, for both insulated CAG-GFP and EF1 alpha-GFP, constitutive expression at the chromosome 13 locus was maintained during prolonged culture and in directed differentiation assays toward diverse types of neurons, pancreatic endoderm, and mesodermal progeny. In particular, described here is the first normal hESC fluorescent reporter line that robustly expresses GFP in both the undifferentiated state and throughout dopaminergic lineage differentiation. The dual strategy of utilizing insulator sequences and integration at the constitutive chromosome 13 locus ensures appropriate transgene expression. This is a valuable tool for lineage development study, gain- and loss-of-function experiments, and human disease modeling using hESCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available