4.5 Article

A Defined Medium and Substrate for Expansion of Human Mesenchymal Stromal Cell Progenitors That Enriches for Osteo- and Chondrogenic Precursors

Journal

STEM CELLS AND DEVELOPMENT
Volume 20, Issue 1, Pages 77-87

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/scd.2009.0497

Keywords

-

Funding

  1. Australian Research Council
  2. Australian Institute for Bioengineering and Nanotechnology (University of Queensland)

Ask authors/readers for more resources

Human mesenchymal stromal cells (hMSCs) have generated significant interest due to their potential use in clinical applications. hMSCs are present at low frequency in vivo, but after isolation can be expanded considerably, generating clinically useful numbers of cells. In this study, we demonstrate the use of a defined embryonic stem cell expansion medium, mTeSR (Stem Cell Technologies), for the expansion of bone-marrow-derived hMSCs. The hMSCs grow at comparable rates, demonstrate tri-lineage differentiation potential, and show similar surface marker profiles (CD29(+), CD44(+), CD49a(+), CD73+, CD90(+), CD105(+), CD146(+), CD166(+), CD34(-), and CD45(-)) in both the fetal bovine serum (FBS)-supplemented medium and mTeSR. However, expression of early differentiation transcription factors runt-related transcription factor 2, sex-determining region Y box 9, and peroxisome proliferator-activated receptor gamma changed significantly. Both runt-related transcription factor 2 and sex-determining region Y box 9 were upregulated, whereas peroxisome proliferator-activated receptor gamma was downregulated in mTeSR compared with FBS. Although osteogenic and chondrogenic differentiation was comparable in cells grown in mTeSR compared to FBS, adipogenic differentiation was significantly decreased in mTeSR-expanded cells, both in terms of gene expression and absolute numbers of adipocytes. The removal of the FBS from the medium and the provision of a defined medium with disclosed composition make mTeSR a superior study platform for hMSC biology in a controlled environment. Further, this provides a key step toward generating a clinical-grade medium for expansion of hMSCs for clinical applications that rely on osteo-and chondroinduction of MSCs, such as bone repair and cartilage generation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available