4.5 Article

Resveratrol Promotes Osteogenic Differentiation and Protects Against Dexamethasone Damage in Murine Induced Pluripotent Stem Cells

Journal

STEM CELLS AND DEVELOPMENT
Volume 19, Issue 2, Pages 247-258

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/scd.2009.0186

Keywords

-

Funding

  1. NSC [97-3111-B-075-001-MY3]
  2. Taipei Veterans General Hospital [V97B1-006, E1-008, ER2-018, ER3-005, F-001]
  3. Joint Projects of UTVGH [VGHUST 98-G6-6]
  4. Yen-Tjing-Ling Medical Foundation
  5. National Yang-Ming University (Ministry of Education, Aim for the Top University Plan)
  6. Technology Development Program for Academia, Department of Industrial Technology, Ministry of Economic Affairs, Taiwan

Ask authors/readers for more resources

Resveratrol is a natural polyphenol antioxidant that has been shown to facilitate osteogenic differentiation. A recent breakthrough has demonstrated that ectopic expression of four genes is sufficient to reprogram murine and human fibroblasts into induced pluripotent stem (iPS) cells. However, the roles of resveratrol in the differentiation and cytoprotection of iPS cells have never been studied. In this study, we showed that, in addition to cardiac cells, neuron-like cells, and adipocytes, mouse iPS cells could differentiate into osteocyte-like cells. Using atomic force microscopy that provided nanoscale resolution, we monitored mechanical properties of living iPS cells during osteogenic differentiation. The intensity of mineralization and stiffness in differentiating iPS significantly increased after 14 days of osteogenic induction. Furthermore, resveratrol was found to facilitate osteogenic differentiation in both iPS and embryonic stem cells, as shown by increased mineralization, up-regulation of osteogenic markers, and decreased elastic modulus. Dexamethasone-induced apoptosis in iPS cell-derived osteocyte-like cells was effectively prevented by pretreatment with resveratrol. Furthermore, resveratrol significantly increased manganese superoxide dismutase expression and intracellular glutathione level, thereby efficiently decreasing dexamethasone-induced reactive oxygen species (ROS) production and cytotoxicity. Transplantation experiments using iPS cell-derived osteocyte-like cells further demonstrated that oral intake of resveratrol could up-regulate osteopontin expression and inhibit teratoma formation in vivo. In sum, resveratrol can facilitate differentiation of iPS cells into osteocyte-like cells, protect these iPS cell-derived osteocyte-like cells from glucocorticoid-induced oxidative damage, and decrease tumorigenicity of iPS cells. These findings implicate roles of resveratrol and iPS cells in the stem cell therapy of orthopedic diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available