4.7 Article

Remote Transplantation of Mesenchymal Stem Cells Protects the Heart Against Ischemia-Reperfusion Injury

Journal

STEM CELLS
Volume 32, Issue 8, Pages 2123-2134

Publisher

WILEY-BLACKWELL
DOI: 10.1002/stem.1687

Keywords

Mesenchymal stem cells; Remote transplantation; Cardioprotection; In vivo imaging; Heme oxygenase-1; Pentraxin 3

Funding

  1. National Health Association
  2. University of Oslo
  3. Norwegian Center for Stem Cell Research
  4. Romanian Ministry of Education and Research [RU-TE88/2010, PCCA-1-THERION 79/2012]
  5. CARDIOPRO Project [143-ERDF]
  6. Research Council of Norway in the YGGDRASIL program
  7. [POSDRU/89/1.5/S/55216]

Ask authors/readers for more resources

Cardioprotection can be evoked through extracardiac approaches. This prompted us to investigate whether remote transplantation of stem cells confers protection of the heart against ischemic injury. The cardioprotective effect of subcutaneous transplantation of naive versus heme oxygenase-1 (HMOX-1)-overexpressing mouse mesenchymal stem cells (MSC) to mice was investigated in hearts subjected to ischemia-reperfusion in a Langendorff perfusion system. Mice were transplanted into the interscapular region with naive or HMOX-1 transfected MSC isolated from transgenic luciferase reporter mice and compared to sham-treated animals. The fate of transplanted cells was followed by in vivo bioluminescence imaging, revealing that MSC proliferated, but did not migrate detectably from the injection site. Ex vivo analysis of the hearts showed that remote transplantation of mouse adipose-derived MSC (mASC) resulted in smaller infarcts and improved cardiac function after ischemia-reperfusion compared to sham-treated mice. Although HMOX-1 overexpression conferred cytoprotective effects on mASC against oxidative stress in vitro, no additive beneficial effect of HMOX-1 transfection was noted on the ischemic heart. Subcutaneous transplantation of MSC also improved left ventricular function when transplanted in vivo after myocardial infarction. Plasma analysis and gene expression profile of naive- and HMOX-1-mASC after transplantation pointed toward pentraxin 3 as a possible factor involved in the remote cardioprotective effect of mASC. These results have significant implications for understanding the behavior of stem cells after transplantation and development of safe and noninvasive cellular therapies with clinical applications. Remote transplantation of MSC can be considered as an alternative procedure to induce cardioprotection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available