4.7 Article

Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation

Journal

STEM CELLS
Volume 31, Issue 10, Pages 2231-2241

Publisher

WILEY
DOI: 10.1002/stem.1483

Keywords

Ionizing radiation; Mesenchymal stem cell; Chronic inflammation; Dermal fibrosis

Funding

  1. National Institutes of Health Intramural Research Program (National Cancer Institute)
  2. Radiation/Nuclear Medical Countermeasures Program (National Institute of Allergy and Infectious Diseases)

Ask authors/readers for more resources

Exposure to ionizing radiation (IR) can result in the development of cutaneous fibrosis, for which few therapeutic options exist. We tested the hypothesis that bone marrow-derived mesenchymal stem cells (BMSC) would favorably alter the progression of IR-induced fibrosis. We found that a systemic infusion of BMSC from syngeneic or allogeneic donors reduced skin contracture, thickening, and collagen deposition in a murine model. Transcriptional profiling with a fibrosis-targeted assay demonstrated increased expression of interleukin-10 (IL-10) and decreased expression of IL-1 beta in the irradiated skin of mice 14 days after receiving BMSC. Similarly, immunoassay studies demonstrated durable alteration of these and several additional inflammatory mediators. Immunohistochemical studies revealed a reduction in infiltration of proinflammatory classically activated CD80(+) macrophages and increased numbers of anti-inflammatory regulatory CD163(+) macrophages in irradiated skin of BMSC-treated mice. In vitro coculture experiments confirmed that BMSC induce expression of IL-10 by activated macrophages, suggesting polarization toward a regulatory phenotype. Furthermore, we demonstrated that tumor necrosis factor-receptor 2 (TNF-R2) mediates IL-10 production and transition toward a regulatory phenotype during coculture with BMSC. Taken together, these data demonstrate that systemic infusion of BMSC can durably alter the progression of radiation-induced fibrosis by altering macrophage phenotype and suppressing local inflammation in a TNF-R2-dependent fashion. Stem Cells 2013;31:2231-2241

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available