4.7 Article

Epigenetic Regulation of Nanog by MiR-302 Cluster-MBD2 Completes Induced Pluripotent Stem Cell Reprogramming

Journal

STEM CELLS
Volume 31, Issue 4, Pages 666-681

Publisher

OXFORD UNIV PRESS
DOI: 10.1002/stem.1302

Keywords

Induced pluripotent stem cells; MicroRNA; Epigenetics; Reprogramming

Funding

  1. Public Health Service [RO1 HL056416, RO1 HL067384, PO1 DK090948]
  2. AHA
  3. Riley Children's Foundation

Ask authors/readers for more resources

While most somatic cells undergoing induced pluripotent stem (iPS) cell reprogramming with Yamanaka factors accumulate at stable partially reprogrammed stages, the molecular mechanisms required to achieve full reprogramming are unknown. MicroRNAs (miRNAs) fine-tune mRNA translation and are implicated in reprogramming, but miRNA functional targets critical for complete iPS cell reprogramming remain elusive. We identified methyl-DNA binding domain protein 2 (MBD2) as an epigenetic suppressor, blocking full reprogramming of somatic to iPS cells through direct binding to NANOG promoter elements preventing transcriptional activation. When we overexpressed miR-302 cluster we observed a significant increase in conversion of partial to fully reprogrammed iPS cells by suppressing MBD2 expression, thereby increasing NANOG expression. Thus, expression of exogenous miR-302 cluster (without miR-367) is efficient in attaining a fully reprogrammed iPS state in partially reprogrammed cells by relieving MBD2-mediated inhibition of NANOG expression. Our studies provide a direct molecular mechanism involved in generating complete human iPS cell reprogramming to study disease pathogenesis, drug screening, and for potential cell-based therapies. STEM CELLS 2013;31:666681

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available