4.7 Article

Primary Cilia-Mediated Mechanotransduction in Human Mesenchymal Stem Cells

Journal

STEM CELLS
Volume 30, Issue 11, Pages 2561-2570

Publisher

WILEY
DOI: 10.1002/stem.1235

Keywords

Human mesenchymal stem cell; Primary cilium; Mechanotransduction; Fluid flow; Osteogenic Differentiation; Proliferation

Funding

  1. IRCSET-Marie Curie International Mobility Fellowship in Science, Engineering and Technology
  2. New York State Stem Cell Grant [N089-210]
  3. NIH [AR45989, AR54156, AR62177]

Ask authors/readers for more resources

Physical loading is a potent stimulus required to maintain bone homeostasis, partly through the renewal and osteogenic differentiation of mesenchymal stem cells (MSCs). However, the mechanism by which MSCs sense a biophysical force and translate that into a biochemical bone forming response (mechanotransduction) remains poorly understood. The primary cilium is a single sensory cellular extension, which has recently been shown to demonstrate a role in cellular mechanotransduction and MSC lineage commitment. In this study, we present evidence that short periods of mechanical stimulation in the form of oscillatory fluid flow (OFF) is sufficient to enhance osteogenic gene expression and proliferation of human MSCs (hMSCs). Furthermore, we demonstrate that the cilium mediates fluid flow mechanotransduction in hMSCs by maintaining OFF-induced increases in osteogenic gene expression and, surprisingly, to limit OFF-induced increases in proliferation. These data therefore demonstrate a pro-osteogenic mechanosensory role for the primary cilium, establishing a novel mechanotransduction mechanism in hMSCs. Based on these findings, the application of OFF may be a beneficial component of bioreactor-based strategies to form bone-like tissues suitable for regenerative medicine and also highlights the cilium as a potential therapeutic target for efforts to mimic loading with the aim of preventing bone loss during diseases such as osteoporosis. Furthermore, this study demonstrates a role for the cilium in controlling mechanically mediated increases in the proliferation of hMSCs, which parallels proposed models of polycystic kidney disease. Unraveling the mechanisms leading to rapid proliferation of mechanically stimulated MSCs with defective cilia could provide significant insights regarding ciliopathies and cystic diseases. STEM CELLS2012;30:25612570

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available