4.7 Article

ZO-1 Regulates Erk, Smad1/5/8, Smad2, and RhoA Activities to Modulate Self-Renewal and Differentiation of Mouse Embryonic Stem Cells

Journal

STEM CELLS
Volume 30, Issue 9, Pages 1885-1900

Publisher

WILEY-BLACKWELL
DOI: 10.1002/stem.1172

Keywords

Cell lineage; Cell polarity; Cellular structures; Differentiation; Embryonic stem cells; Signal transduction; Stem cell research; Tight junctions

Funding

  1. Agency for Science, Technology and Research (A*STAR), Singapore
  2. A*STAR JCO [JCOAG04_FG03_2009]

Ask authors/readers for more resources

ZO-1/Tjp1 is a cytosolic adaptor that links tight junction (TJ) transmembrane proteins to the actin cytoskeleton and has also been implicated in regulating cell proliferation and differentiation by interacting with transcriptional regulators and signaling proteins. To explore possible roles for ZO-1 in mouse embryonic stem cells (mESCs), we inactivated the ZO-1 locus by homologous recombination. The lack of ZO-1 was found to affect mESC self-renewal and differentiation in the presence of leukemia-inhibiting factor (LIF) and Bmp4 or following removal of the growth factors. Our data suggest that ZO-1 suppresses Stat3 and Smad1/5/8 activities and sustains extracellular-signal-regulated kinase (Erk) activity to promote mESC differentiation. Interestingly, Smad2, critical for human but not mESC self-renewal, was hyperactivated in ZO-1(-/-) mESCs and RhoA protein levels were concomitantly enhanced, suggesting attenuation of the noncanonical transforming growth factor beta (Tgf beta)/Activin/Nodal pathway that mediates ubiquitination and degradation of RhoA via the TJ proteins Occludin, Par6, and Smurf1 and activation of the canonical Smad2-dependent pathway. Furthermore, Bmp4-induced differentiation of mESCs in the absence of LIF was suppressed in ZO-1(-/-) mESCs, but differentiation down the neural or cardiac lineages was not disturbed. These findings reveal novel roles for ZO-1 in mESC self-renewal, pluripotency, and differentiation by influencing several signaling networks that regulate these processes. Possible implications for the differing relevance of Smad2 in mESC and human ESC self-renewal and how ZO-1 may connect to the different pathways are discussed. STEM CELLS 2012;30:1885-1900

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available