4.7 Article

Gene Expression Profiling of Neural Stem Cells and Identification of Regulators of Neural Differentiation During Cortical Development

Journal

STEM CELLS
Volume 29, Issue 11, Pages 1817-1828

Publisher

WILEY-BLACKWELL
DOI: 10.1002/stem.731

Keywords

Neural stem cell; Fluorescent-activated cell sorting; Microarray; Gene expression; Neural differentiation; Cell migration

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. Grants-in-Aid for Scientific Research [23500390, 22123002, 21240028] Funding Source: KAKEN

Ask authors/readers for more resources

During mammalian brain development, neural stem cells transform from neuroepithelial cells to radial glial cells and finally remain as astrocyte-like cells in the postnatal and adult brain. Neuroepithelial cells divide symmetrically and expand the neural stem cell pool; after the onset of neurogenesis, radial glial cells sequentially produce deep layer neurons and then superficial layer neurons by asymmetric, self-renewing divisions during cortical development. Thereafter, gliogenesis supersedes neurogenesis, while a subset of neural stem cells retain their stemness and lurk in the postnatal and adult brain. Thus, neural stem cells undergo alterations in morphology and the capacity to proliferate or give rise to various types of neural cells in a temporally regulated manner. To shed light on the temporal alterations of embryonic neural stem cells, we sorted the green fluorescent protein-positive cells from the dorsolateral telencephalon (neocortical region) of pHes1-d2EGFP transgenic mouse embryos at different developmental stages and performed gene expression profiling. Among dozens of transcription factors differentially expressed by cells in the ventricular zone during the course of development, several of them exhibited the activity to inhibit neuronal differentiation when overexpressed. Furthermore, knockdown of Tcf3 or Klf15 led to accelerated neuronal differentiation of neural stem cells in the developing cortex, and neurospheres originated from Klf15 knockdown cells mostly lacked neurogenic activities and only retained gliogenic activities. These results suggest that Tcf3 and Klf15 play critical roles in the maintenance of neural stem cells at early and late embryonic stages, respectively. STEM CELLS 2011;29:1817-1828

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available