4.7 Article

Emx2 and Foxg1 Inhibit Gliogenesis and Promote Neuronogenesis

Journal

STEM CELLS
Volume 28, Issue 7, Pages 1206-1218

Publisher

WILEY
DOI: 10.1002/stem.443

Keywords

Cerebral cortex; Emx2; Foxg1; Neural stem cells; Gliogenesis; Neuronogenesis

Funding

  1. Italian MIUR [PRIN 20079ZLWYP]
  2. Regione F.V.G.
  3. SISSA

Ask authors/readers for more resources

Neural stem cells (NSCs) give rise to all cell types forming the cortex: neurons, astrocytes, and oligodendrocytes. The transition from the former to the latter ones takes place via lineage-restricted progenitors in a highly regulated way. This process is mastered by large sets of genes, among which some implicated in central nervous system pattern formation. The aim of this study was to disentangle the kinetic and histogenetic roles exerted by two of these genes, Emx2 and Foxg1, in cortico-cerebral precursors. For this purpose, we set up a new integrated in vitro assay design. Embryonic cortical progenitors were transduced with lentiviral vectors driving overexpression of Emx2 and Foxg1 in NSCs and neuronal progenitors. Cells belonging to different neuronogenic and gliogenic compartments were labeled by spectrally distinguishable fluoroproteins driven by cell type-specific promoters and by cell type-specific antibodies and were scored via multiplex cytofluorometry and immunocyto-fluorescence. A detailed picture of Emx2 and Foxg1 activities in cortico-cerebral histogenesis resulted from this study. Unexpectedly, we found that both genes inhibit gliogenesis and promote neuronogenesis, through distinct mechanisms, and Foxg1 also dramatically stimulates neurite outgrowth. Remarkably, such activities, alone or combined, may be exploited to ameliorate the neuronal output obtainable from neural cultures, for purposes of cell-based brain repair. STEM CELLS 2010;28:1206-1218

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available