4.7 Article

Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma

Journal

STEM CELLS
Volume 26, Issue 3, Pages 831-841

Publisher

WILEY
DOI: 10.1634/stemcells.2007-0758

Keywords

glioma; stem cells; adenovirus; oncolytic virus; vector; migration; gene therapy

Funding

  1. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [K08NS046430] Funding Source: NIH RePORTER
  2. NINDS NIH HHS [K08-NS046430] Funding Source: Medline

Ask authors/readers for more resources

Gene therapy represents a promising treatment alternative for patients with malignant gliomas. Nevertheless, in the setting of these highly infiltrative tumors, transgene delivery remains a challenge. Indeed, viral vehicles tested in clinical trials often target only those tumor cells that are adjacent to the injection site. In this study, we examined the feasibility of using human mesenchymal stem cells (hMSC) to deliver a replication-competent oncolytic adenovirus (CRAd) in a model of intracranial malignant glioma. To do so, CRAds with a chimeric 5/3 fiber or RGD backbone with or without CXCR4 promoter driving E1A were examined with respect to replication and toxicity in hMSC, human astrocytes, and the human glioma cell line U87MG by quantitative polymerase chain reaction and membrane integrity assay. CRAd delivery by virus-loaded hMSC was then evaluated in vitro and in an in vivo model of mice bearing intracranial U87MG xenografts. Our results show that hMSC are effectively infected by CRAds that use the CXCR4 promoter. CRAd-CXCR4-RGD had the highest replication, followed by CRAd-CXCR4-5/3, in hMSC, with comparable levels of toxicity. In U87MG tumor cells, CRAdCXCR4 -5/3 showed the highest replication and toxicity. Virus-loaded hMSC effectively migrated in vitro and released CRAds that infected U87MG glioma cells. When injected away from the tumor site in vivo, hMSC migrated to the tumor and delivered 46-fold more viral copies than injection of CRAd-CXCR4-5/3 alone. Taken together, these results indicate that hMSC migrate and deliver CRAd to distant glioma cells. This delivery strategy should be explored further, as it could improve the outcome of oncolytic virotherapy for glioma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available