4.7 Article

Regulation of Prenatal Human Retinal Neurosphere Growth and Cell Fate Potential by Retinal Pigment Epithelium and Mash1

Journal

STEM CELLS
Volume 26, Issue 12, Pages 3182-3193

Publisher

WILEY
DOI: 10.1634/stemcells.2008-0300

Keywords

Retinal progenitor cells; Retinal pigment epithelium; Mash1; Conditioned medium; Differentiation; Culture; Human

Funding

  1. National Eye Institute [K08EY015138]
  2. Foundation Fighting Blindness (Walsh Retinal Stem Cell Consortium)
  3. Heckrodt Foundation
  4. Lincy Foundation
  5. Retina Research Foundation
  6. NATIONAL EYE INSTITUTE [K08EY015138] Funding Source: NIH RePORTER

Ask authors/readers for more resources

During development of the central nervous system, stem and progenitor cell proliferation and differentiation are controlled by complex inter- and intracellular interactions that orchestrate the precise spatiotemporal production of particular cell types. Within the embryonic retina, progenitor cells are located adjacent to the retinal pigment epithelium (RPE), which differentiates prior to the neurosensory retina and has the capacity to secrete a multitude of growth factors. We found that secreted proteinaceous factors in human prenatal RPE conditioned medium (RPE CM) prolonged and enhanced the growth of human prenatal retinal neurospheres. The growth-promoting activity of RPE CM was mitogen-dependent and associated with an acute increase in transcription factor phosphorylation. Expanded populations of RPE CM-treated retinal neurospheres expressed numerous neurodevelopmental and eye specification genes and markers characteristic of neural and retinal progenitor cells, but gradually lost the potential to generate neurons upon differentiation. Misexpression of Mash1 restored the neurogenic potential of long-term cultures, yielding neurons with phenotypic characteristics of multiple inner retinal cell types. Thus, a novel combination of extrinsic and intrinsic factors was required to promote both progenitor cell proliferation and neuronal multipotency in human retinal neurosphere cultures. These results support a pro-proliferative and antiapoptotic role for RPE in human retinal development, reveal potential limitations of human retinal progenitor culture systems, and suggest a means for overcoming cell fate restriction in vitro. STEM CELLS 2008;26:3182-3193

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available