4.2 Article

Effects of Na/K-ATPase and its ligands on bone marrow stromal cell differentiation

Journal

STEM CELL RESEARCH
Volume 13, Issue 1, Pages 12-23

Publisher

ELSEVIER
DOI: 10.1016/j.scr.2014.04.002

Keywords

-

Funding

  1. NIH [HL-105649, HL-109015]

Ask authors/readers for more resources

Endogenous ligands of Na/K-ATPase have been demonstrated to increase in kidney dysfunction and heart failure. It is also reported that Na/K-ATPase signaling function effects stem cell differentiation. This study evaluated whether Na/K-ATPase activation through its ligands and associated signaling functions affect bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) differentiation capacity. BMSCs were isolated from male Sprague-Dawley rats and cultured in minimal essential medium alpha (MEM-alpha) supplemented with 15% Fetal Bovine serum (FBS). The results showed that marinobufagenin (MBG), a specific Na/K-ATPase ligand, potentiated rosiglitazone-induced adipogenesis in these BMSCs. Meanwhile, it attenuated BMSC osteogenesis. Mechanistically, MBG increased CCAAT/enhancer binding protein alpha (C/EBP alpha) protein expression through activation of an extracellular regulated kinase (ERK) signaling pathway, which leads to enhanced rosiglitazone-induced adipogenesis. Inhibition of ERK activation by U0126 blocks the effect of MBG on C/EBP alpha expression and on rosiglitazone-induced adipogenesis. Reciprocally, MBG reduced runt-related transcription factor 2 (RunX2) expression, which resulted in the inhibition of osteogenesis induced by beta-glycerophosphate/ascorbic acid. MBG also potentiated rosiglitazone-induced adipogenesis in 3T3-L1 cells and in mouse BMSCs. These results suggest that Na/K-ATPase and its signaling functions are involved in the regulation of BMSCs differentiation. (C) 2014 The Authors. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available