4.5 Article

Sample size evaluation for a multiply matched case-control study using the score test from a conditional logistic (discrete Cox PH) regression model

Journal

STATISTICS IN MEDICINE
Volume 27, Issue 14, Pages 2509-2523

Publisher

WILEY
DOI: 10.1002/sim.3057

Keywords

sample size; power; conditional logistic model; Cox proportional hazards model; multiple matching; case-control study; nested case-control study

Ask authors/readers for more resources

The conditional logistic regression model (Biometrics 1982; 38:661-672) provides a convenient method for the assessment of qualitative or quantitative covariate effects on risk in a study with matched sets, each containing a possibly different number of cases and controls. The conditional logistic likelihood is identical to the stratified Cox proportional hazards model likelihood, with an adjustment for ties (J. R. Stat. Soc. B 1972; 34:187-220). This likelihood also applies to a nested case-control study with multiply matched cases and controls, selected from those at risk at selected event times. Herein the distribution of the score test for the effect of a covariate in the model is used to derive simple equations to describe the power of the test to detect a coefficient theta (log odds ratio or log hazard ratio) or the number of cases (or matched sets) and controls required to provide a desired level of power. Additional expressions are derived for a quantitative covariate as a function of the difference in the assumed mean covariate values among cases and controls and for a qualitative covariate in terms of the difference in the probabilities of exposure for cases and controls. Examples are presented for a nested case-control study and a multiply matched case-control study. Copyright (C) 2007 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available