4.7 Article

Ruthenium(II) carbonyl complexes containing pyridine carboxamide ligands and PPh3/AsPh3/Py coligands: Synthesis, spectral characterization, catalytic and antioxidant studies

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2012.10.072

Keywords

Pyridine carboxamide ligands; Ruthenium(II) complexes; Catalytic transfer hydrogenation; N-alkylation; Antioxidant activities

Categories

Ask authors/readers for more resources

New ruthenium(II) carbonyl complexes bearing pyridine carboxamide and triphenylphosphine/triphenylarsine/pyridine have been prepared by direct reaction of ruthenium(II) precursors with some pyridine carboxamide ligands, N,N-bis(2-pyridinecarboxamide)-1,2-ethane (H2L1), N,N-bis(2-pyridinecarboxamide)-1,2-benzene (H2L2) and N,N-bis(2-pyridinecarboxamide)-trans-1,2-cyclohexane (H2L3). The organic ligands offering two N-amide and two N-pyridine donor Sites to the metal centre. They have been characterized by elemental analyses, FT-IR, UV-Visible, NMR (H-1, C-13 and P-31) and ESI-MS techniques. Based on the above data, an octahedral structure has been assigned for all the complexes. The catalytic efficiency of the complexes in transfer hydrogenation of ketones in the presence of iPrOH/KOH and N-alkylation of amine in the presence of tBuOK was examined. Furthermore, the antioxidant activity of the ligands and its ruthenium(II) complexes were determined by DPPH radical, nitric oxide radical, hydroxyl radical and hydrogen peroxide scavenging methods, which indicates that the ruthenium(II) complexes exhibit more effective antioxidant activity than the ligands alone. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available