4.4 Article

Using an Artificial-Neural-Network Method To Predict Carbonate Well Log Facies Successfully

Journal

SPE RESERVOIR EVALUATION & ENGINEERING
Volume 14, Issue 1, Pages 35-44

Publisher

SOC PETROLEUM ENG
DOI: 10.2118/123988-PA

Keywords

-

Ask authors/readers for more resources

The Maastrichtian (Upper Cretaceous) reservoir is one of five prolific oil reservoirs in the giant Wafra oil field. The Maastrichtian oil production is largely from subtidal dolomites at an average depth of 2,500 ft. Carbonate deposition occurred on a very gently dipping, shallow, arid, and restricted ramp setting that transitional between normal marine conditions to restricted lagoonal environments. The average porosity of the reservoir interval is approximately 15%, although productive zones have porosity values up to 30-40%. The average permeability of the reservoir interval is approximately 30 md. Individual core plugs have measured permeability up to 1,200 md. Efforts to predict sedimentary facies from well logs in carbonate reservoirs is difficult because of the complex carbonate sedimentary fades structures, strong diagenetic overprint, and challenging log analysis in part owing to the presence of vugs and fractures. In the study, a workflow including (I) core description preprocessing, (2) log- and core-data cleanup, and (3) probabilistic-neural-network (PNN) facies analysis was used to predict facies from log data accurately. After evaluation of a variety of statistical approaches, a PNN-based approach was used to predict facies from well-log data. The PNN was selected as a tool because it has the capability to delineate complex nonlinear relationships between facies and log data. The PNN method was shown to outperform multivariate statistical algorithms and, in this study, gave good prediction accuracy (above 70%). The prediction uncertainty was quantified by two probabilistic logs discriminant ability and overall confidence. These probabilistic logs can be used to evaluate the prediction uncertainty during interpretation. Lithofacies were predicted for 15 key wells in the Wafra Maastrichtian reservoir and were effectively used to extend the understanding of the Maastrichtian stratigraphy, depositional setting, and facies distribution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available