4.4 Article Proceedings Paper

Multiphysics and Multiscale Methods for Modeling Fluid Flow Through Naturally Fractured Carbonate Karst Reservoirs

Journal

SPE RESERVOIR EVALUATION & ENGINEERING
Volume 12, Issue 2, Pages 218-231

Publisher

SOC PETROLEUM ENG
DOI: 10.2118/105378-PA

Keywords

-

Ask authors/readers for more resources

Modeling and numerical simulations of Carbonate karst reservoirs is a challenging problem because of the presence of vugs and caves which are connected through fracture networks at multiple scales. In this paper, we propose a unified approach to this problem by using the Stokes-Brinkman equations which combine both Stokes and Darcy flows. These equations are capable of representing porous media (porous rock) as well as free-flow regions (fractures, vugs, and caves) in a single system of equations. The Stokes-Brinkman equations also generalize the traditional Darcy-Stokes coupling without sacrificing the modeling rigor. Thus, it allows us to use a single set of equations to represent multiphysics phenomena on multiple scales. The local Stokes-Brinkman equations are used to perform accurate scale-up. We present numerical results for permeable rock matrix populated with elliptical vugs and we consider upscaling to two different coarse-scale grids-5x5 and 10 x 10. Both constant and variable background permeability matrices are considered and the effect the vugs have on the overall permeability is evaluated. The Stokes-Brinkman equations are also used to study several vug/cave configurations which are typical of Tahe oilfield in China.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available