4.2 Article

Injectivity Decline From Produced-Water Reinjection: New Insights on In-Depth Particle-Deposition Mechanisms

Journal

SPE PRODUCTION & OPERATIONS
Volume 23, Issue 4, Pages 525-531

Publisher

SOC PETROLEUM ENG
DOI: 10.2118/107666-PA

Keywords

-

Ask authors/readers for more resources

Injectivity decline during produced-water reinjection (PWRI) originates not only from filter-cake buildup but also from in-depth deposition of oil droplets or solid particles. Physical modeling of particle-deposition mechanisms in porous media is thus of key interest for optimizing PWRI operations. The present work brings new insights on oil-droplet and solid-particle-deposition mechanisms in porous media. The experimental conditions were selected Such that the ratio between pores and particle sizes is sufficiently large to ensure in-depth propagation. The parameters are the nature of the particles injected and a Peclet number calculated oil the size Of the collector grains (Pe(g))that encompasses in a nondimensional form the impact of both the flow rate and the particle size. The results are analyzed within the framework of the colloidal approach. For oil droplets and solid particles, the collection efficiency (eta) shows a transition from a behavior in which eta varies as a power law of Pe(g) with exponent values -2/3 [(diffusion-limited deposition (DLD)] to -1 [reaction-limited deposition (RLD)] that are typical of the convection/diffusion regime. to a behavior characterized by an increase of eta vs. Pe(g), typical of the hydrodynamic deposition regime. In the case of oil droplets (slightly charged). the transition Occurs at a critical Pe(g) Value, Pe(gC)approximate to Pe(gC)(geom)/10. corresponding to a diffusion-layer thickness around the collector grain of the same order of magnitude as the droplet diameter. In the case of electrosterically stabilized solid particles, the transition takes place at pe(gC) << Pe(gC)(geom) ( for small particles and at Pe(gC)>Pe(gC)(geom) for larger particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available