4.6 Article Proceedings Paper

Simulation of Flow and Dispersion on Pore-Space Images

Journal

SPE JOURNAL
Volume 17, Issue 4, Pages 1131-1141

Publisher

SOC PETROLEUM ENG
DOI: 10.2118/135261-PA

Keywords

-

Ask authors/readers for more resources

We simulate flow and transport directly on pore-space images obtained from a microcomputed-tomography (micro-CT) scan of rock cores. An efficient Stokes solver is used to simulate low-Reynolds-number flows. The flow simulator uses a finite-difference method along with a standard predictor/corrector procedure to decouple pressure and velocity. An algebraic multigrid technique solves the linear systems of equations. We then predict permeability, and the results are compared with lattice-Boltzmann-method (LBM) numerical results and available experimental data. For solute transport, we apply a streamline-based algorithm that is similar to the Pollock algorithm common in field-scale reservoir simulation, but which uses a novel semianalytic formulation near solid boundaries to capture, with subgrid resolution, the variation in velocity near the grains. A random-walk method accounts for molecular diffusion. The streamline-based algorithm is validated by comparison with published results for Taylor-Aris dispersion in a single capillary with a square cross section. We then predict accurately the available experimental data in the literature for the longitudinal dispersion coefficient for a range of Peclet numbers (10(-2) to 10(5)). We introduce a characteristic length on the basis of the ratio of volume to pore/grain surface area that can be used for consolidated porous media to calculate the Peclet number.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available