4.5 Review

Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites

Journal

SPACE SCIENCE REVIEWS
Volume 153, Issue 1-4, Pages 317-348

Publisher

SPRINGER
DOI: 10.1007/s11214-010-9636-0

Keywords

Satellites; Energy sources; Rotation; Tides; Orbital dynamics; Heat transfer

Funding

  1. NASA
  2. Helmholtz Association

Ask authors/readers for more resources

Internal processes in icy satellites, e.g. the exchange of material from the subsurface to the surface or processes leading to volcanism and resurfacing events, are a consequence of the amount of energy available in the satellites' interiors. The latter is mainly determined shortly after accretion by the amount of radioactive isotopes incorporated in the silicates during the accretion process. However, for satellites-as opposed to single objects-important contributions to the energy budget on long time-scales can come from the interaction with other satellites (forcing of eccentricities of satellites in resonance) and consequently from the tidal interaction with the primary planet. Tidal evolution involves both changes of the rotation state-usually leading to the 1:1 spin orbit coupling-and long-term variations of the satellite orbits. Both processes are dissipative and thus connected with heat production in the interior. The way heat is transported from the interior to the surface (convection, conduction, (cryo-) volcanism) is a second main aspect that determines how internal processes in satellites work. In this chapter we will discuss the physics of heat production and heat transport as well as the rotational and orbital states of satellites. The relevance of the different heat sources for the moons in the outer solar system are compared and discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available