4.5 Review

Helioseismology of Sunspots: A Case Study of NOAA Region 9787

Journal

SPACE SCIENCE REVIEWS
Volume 144, Issue 1-4, Pages 249-273

Publisher

SPRINGER
DOI: 10.1007/s11214-008-9466-5

Keywords

Sun; Sunspots; Helioseismology

Funding

  1. Directorate For Geosciences
  2. Div Atmospheric & Geospace Sciences [0737770] Funding Source: National Science Foundation

Ask authors/readers for more resources

Various methods of helioseismology are used to study the subsurface properties of the sunspot in NOAA Active Region 9787. This sunspot was chosen because it is axisymmetric, shows little evolution during 20-28 January 2002, and was observed continuously by the MDI/SOHO instrument. AR 9787 is visible on helioseismic maps of the farside of the Sun from 15 January, i.e. days before it crossed the East limb. Oscillations have reduced amplitudes in the sunspot at all frequencies, whereas a region of enhanced acoustic power above 5.5 mHz (above the quiet-Sun acoustic cutoff) is seen outside the sunspot and the plage region. This enhanced acoustic power has been suggested to be caused by the conversion of acoustic waves into magneto-acoustic waves that are refracted back into the interior and re-emerge as acoustic waves in the quiet Sun. Observations show that the sunspot absorbs a significant fraction of the incoming p and f modes around 3 mHz. A numerical simulation of MHD wave propagation through a simple model of AR 9787 confirmed that wave absorption is likely to be due to the partial conversion of incoming waves into magneto-acoustic waves that propagate down the sunspot. Wave travel times and mode frequencies are affected by the sunspot. In most cases, wave packets that propagate through the sunspot have reduced travel times. At short travel distances, however, the sign of the travel-time shifts appears to depend sensitively on how the data are processed and, in particular, on filtering in frequency-wavenumber space. We carry out two linear inversions for wave speed: one using travel-times and phase-speed filters and the other one using mode frequencies from ring analysis. These two inversions give subsurface wave-speed profiles with opposite signs and different amplitudes. The travel-time measurements also imply different subsurface flow patterns in the surface layer depending on the filtering procedure that is used. Current sensitivity kernels are unable to reconcile these measurements, perhaps because they rely on imperfect models of the power spectrum of solar oscillations. We present a linear inversion for flows of ridge-filtered travel times. This inversion shows a horizontal outflow in the upper 4 Mm that is consistent with the moat flow deduced from the surface motion of moving magnetic features. From this study of AR 9787, we conclude that we are currently unable to provide a unified description of the subsurface structure and dynamics of the sunspot.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available