4.0 Article

Breeding objectives for Holstein cattle in South Africa

Journal

SOUTH AFRICAN JOURNAL OF ANIMAL SCIENCE
Volume 44, Issue 3, Pages 199-214

Publisher

SOUTH AFRICAN JOURNAL OF ANIMAL SCIENCES
DOI: 10.4314/sajas.v44i3.1

Keywords

Butterfat yield; economic value; liveweight; longevity; milk yield; protein yield; relative economic value; somatic cell score

Funding

  1. National Research Foundation (NRF) under the Technology for Human Resources and Industry Programme (THRIP)

Ask authors/readers for more resources

Well-defined breeding objectives form the basis of sound genetic improvement programmes. Breeding objectives for Holstein cattle in South Africa were developed in the current study. Economic values were calculated for those economically relevant traits that had adequate bio-economic data, namely milk volume, fat yield, protein yield, liveweight, longevity, calving interval and somatic cell score (SCS). A bio-economic herd model for pasture-based and concentrate-fed systems in South Africa was used to calculate economic values by determining changes in profit arising from an independent unit increase in each trait. Alternative payment systems were used from four major milk buyers in South Africa. Relative economic values, standardized to the value of protein yield, were used to compare the relative importance of traits. Protein yield and longevity consistently had positive economic values and the converse was true for liveweight and calving interval. Economic value for volume was positive or negative, depending on whether the payment system rewarded or ignored volume. Sensitivity analysis showed that economic values were reasonably robust against fluctuations in the cost of feed and price of beef; with the exception of fat yield, whose value became negative when feed price exceeded ZAR 3.50. Generally, protein yield was the most important trait, although volume, longevity and SCS were more important in some situations. Calving interval was the least important trait, its value ranging from 4% to 22% of protein yield, although the model may have underestimated its value. Further work should focus on facilitating the wide adoption of these breeding objectives by industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available