4.3 Article

Effects of residual copper selenide on CuInGaSe2 solar cells

Journal

SOLID-STATE ELECTRONICS
Volume 56, Issue 1, Pages 175-178

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.sse.2010.11.019

Keywords

CuInGaSe2 (CIGS); CuSe; Thin-film; Solar cells

Funding

  1. Ministry of Economics Affairs, Taiwan

Ask authors/readers for more resources

Large-grain, copper-poor CuInGaSe2 (CIGS) films are favored in the fabrication of highly efficient solar cells. However, the degradation of cell performance caused by residual copper selenide (Cu2-xSe) remains a problem. This work studies the formation and behavior of excess CuxSe and further compares the cell performance of typical copper-poor with that of copper-rich solar cells. Since excess Cu2-xSe cannot be exhausted during the growth, it fully surrounds the polycrystalline CIGS grains. Excess Cu2-xSe in the CIGS film produces serious shunt paths and causes the pn junction to be of poor quality. A short circuit in copper-rich CIGS solar cells is attributable to the conductive Cu2-xSe. The best way to ensure high-efficiency of the cells is to exhaust Cu2-xSe during growth. Otherwise, a dense, chemically treated CIGS film is required to prevent the negative effects of excess Cu2-xSe. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available