4.3 Article

On the electrical degradation and green band formation in α- and β-phase poly(9,9-dioctyfluorene) polymer light-emitting diodes

Journal

SOLID-STATE ELECTRONICS
Volume 61, Issue 1, Pages 46-52

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.sse.2011.02.004

Keywords

Polymer light-emitting diodes; Polyfluorene; beta-Phase; Degradation

Funding

  1. Comunidad Autonoma de Madrid [S0505/ESP/0417, S2009/ESP-1781]
  2. Spanish Ministry of Education and Science [TEC2006-13392-C02-02/MIC]

Ask authors/readers for more resources

In this work we report a detailed comparison of optical and electrical degradation between alpha- and beta-phase poly(9,9-dioctyfluorene) (PFO) based diodes. Analysis of the EL spectra along continuous operation time in alpha- and beta-PFO based diodes reveals that the unwanted green emission traditionally associated to fluorenone is more likely to occur in a-phase PFO. The relative spectral areas arising from excitonic and vibronic transitions as well as fluorenone defects have been quantified by means of Gaussian deconvolution along the operation time. The relative spectral area associated to the formation of the fluorenone increases 13% for the beta-PFO diode and up to 21% for the alpha-PFO diode only after 35 min of continuous operation. Analysis of the I-V curve before and after electrical stressing has lead to hole mobilities in pristine diodes of 1.4 x 10(-4) cm(2)/Vs and 1.6 x 10(-5) cm(2)/Vs for beta-PFO and alpha-PFO respectively. Both beta-PFO and alpha-PFO degraded samples show a reduction in the hole mobility, as well as an increase in the width of the Gaussian density of states. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available