4.3 Article Proceedings Paper

High density 3D memory architecture based on the resistive switching effect

Journal

SOLID-STATE ELECTRONICS
Volume 53, Issue 12, Pages 1287-1292

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.sse.2009.09.034

Keywords

3D memory devices; Resistive RAM; Methyl-silsesquioxane; Nanoimprint lithography

Ask authors/readers for more resources

We demonstrate the fabrication of a 3D memory architecture based on the resistive switching effect. Resistive memory (RRAM) is under wide investigation since it is non-volatile, promises fast operation and can be integrated into high density architectures like crossbar arrays. Here, silver-doped methyl-silsesquioxane (MSQ) is integrated in crossbar array structures for the following reasons. First, the material at the same time provides good planarization properties so that emerging lithography techniques like nanoimprint lithography (NIL) are applicable. Second, we could prove that silver-doped MSQ can be used as resistive switching material on the nano scale. Using this technique, crossbar arrays with a minimum feature size of only 100 nm are stacked on each other and the functionality is proved by electrical characterization. This comprises the doubling of the memory density and furthermore even higher integration is in principle not limited by this technique, while the CMOS overhead increases only slightly. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available