4.5 Article

Biocorrosion and osteoconductivity of PCL/nHAp composite porous film-based coating of magnesium alloy

Journal

SOLID STATE SCIENCES
Volume 18, Issue -, Pages 131-140

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solidstatesciences.2012.11.017

Keywords

Hydroxyapatite; PCL; Biocorrosion; Dip-coating; Magnesium alloys; Tissue engineering scaffold

Funding

  1. Ministry of Education, Science Technology (MEST)
  2. National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation

Ask authors/readers for more resources

The present study was aimed at designing a novel porous hydroxyapatite/poly(epsilon-caprolactone) (nHAp/PCL) hybrid nanocomposite matrix on a magnesium substrate with high and low porosity. The coated samples were prepared using a dip-coating technique in order to enhance the bioactivity and biocompatibility of the implant and to control the degradation rate of magnesium alloys. The mechanical and biocompatible properties of the coated and uncoated samples were investigated and an in vitro test for corrosion was conducted by electrochemical polarization and measurement of weight loss. The corrosion test results demonstrated that both the pristine PCL and nHAp/PCL composites showed good corrosion resistance in SBF. However, during the extended incubation time, the composite coatings exhibited more uniform and superior resistance to corrosion attack than pristine PCL, and were able to survive severe localized corrosion in physiological solution. Furthermore, the bioactivity of the composite film was determined by the rapid formation of uniform CaP nanoparticles on the sample surfaces during immersion in SBF. The mechanical integrity of the composite coatings displayed better performance (similar to 34% higher) than the uncoated samples. Finally, our results suggest that the nHAp incorporated with novel PCL composite membranes on magnesium substrates may serve as an excellent 3-D platform for cell attachment, proliferation, migration, and growth in bone tissue. This novel as-synthesized nHAp/PCL membrane on magnesium implants could be used as a potential material for orthopedic applications in the future. (C) 2012 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available