4.5 Article Proceedings Paper

Pathways for ion transport in nanostructured BaF2:CaF2

Journal

SOLID STATE IONICS
Volume 179, Issue 1-6, Pages 33-37

Publisher

ELSEVIER
DOI: 10.1016/j.ssi.2007.12.053

Keywords

ion transport; BaF2 : CaF2; bond valence method

Ask authors/readers for more resources

The experimentally observed drastic conductivity enhancement in epitactic BaF2:CaF2 heterolayers with respect to any of the two fluoride ion conducting phases is qualitatively reproduced by molecular dynamics simulations and analyzed in detail with particular emphasis on the variation of properties as a function of the distance to the two-phase boundary. Ion mobility varies with the distance to the interface but remains significantly enhanced throughout the modeled layers when compared to bulk materials. The bond valence method is utilized to study correlations between the conductivity enhancement and the microstructure. A time-averaged violation of local electroneutrality postulated in the mesoscopic multiphase model is verified by the bond valence analysis of the molecular dynamics simulation trajectories. Moreover the average coordination number of the fluoride ions is significantly reduced around the interface suggesting a redistribution of anions from regular sites to interstitial sites. The variation of the ion mobility can be related to the extension of clusters of unoccupied accessible pathway regions. (c) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available