4.3 Article

Topological Analysis of Emerging Bipole Clusters Producing Violent Solar Events

Journal

SOLAR PHYSICS
Volume 289, Issue 6, Pages 2041-2071

Publisher

SPRINGER
DOI: 10.1007/s11207-013-0458-6

Keywords

Sun: flares; Sun: filament eruptions; Sun: magnetic fields

Funding

  1. CNRS/INSU
  2. ANPCyT [PICT 2007-1790]
  3. UBACyT [20020100100733]
  4. CONICET [PIP 2009-100766]
  5. National Natural Science Foundation of China (NSFC) [11203014, 10933003]
  6. 973 project [2011CB811402]

Ask authors/readers for more resources

During the rising phase of Solar Cycle 24 tremendous activity occurred on the Sun with rapid and compact emergence of magnetic flux leading to bursts of flares (C to M and even X-class). We investigate the violent events occurring in the cluster of two active regions (ARs), NOAA numbers 11121 and 11123, observed in November 2010 with instruments onboard the Solar Dynamics Observatory and from Earth. Within one day the total magnetic flux increased by 70 % with the emergence of new groups of bipoles in AR 11123. From all the events on 11 November, we study, in particular, the ones starting at around 07:16 UT in GOES soft X-ray data and the brightenings preceding them. A magnetic-field topological analysis indicates the presence of null points, associated separatrices, and quasi-separatrix layers (QSLs) where magnetic reconnection is prone to occur. The presence of null points is confirmed by a linear and a non-linear force-free magnetic-field model. Their locations and general characteristics are similar in both modelling approaches, which supports their robustness. However, in order to explain the full extension of the analysed event brightenings, which are not restricted to the photospheric traces of the null separatrices, we compute the locations of QSLs. Based on this more complete topological analysis, we propose a scenario to explain the origin of a low-energy event preceding a filament eruption, which is accompanied by a two-ribbon flare, and a consecutive confined flare in AR 11123. The results of our topology computation can also explain the locations of flare ribbons in two other events, one preceding and one following the ones at 07:16 UT. Finally, this study provides further examples where flare-ribbon locations can be explained when compared to QSLs and only, partially, when using separatrices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available