4.7 Article

Environmental mechanisms of debonding in photovoltaic backsheets

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 120, Issue -, Pages 87-93

Publisher

ELSEVIER
DOI: 10.1016/j.solmat.2013.08.020

Keywords

Backsheet debonding; Adhesion; Degradation; Aging; Delamination

Funding

  1. Department of Energy through the Bay Area Photovoltaic Consortium [DE-EE0004946]
  2. U.S. Department of Energy [DE-AC36-08GO28308]
  3. National Renewable Energy Laboratory

Ask authors/readers for more resources

The backsheets used in photovoltaic modules are exposed to aggressive field environments that may include combined temperature cycles, moisture, and mechanical loads. The effects of the field environment on backsheet debonding, which can lead to module degradation (corrosion) and loss of function, are still not well understood or quantified. Employing a newly developed quantitative mechanics technique, we report the effect of aging on backsheet debond energy, including the separate effect of temperature, mechanical stress and relative humidity on debond growth rate. The debond energy of the backsheet decreased dramatically from 1000 to 27 J/m(2) within the first 750 h of exposure to hot (85 degrees C) and humid (85% RH) aging treatments. The debond growth rate increased up to 500-fold with small changes of temperature (10 degrees C) and relative humidity (20%). To elucidate the mechanisms of environmental debonding, we developed a fracture-kinetics model, where the molecular relaxation processes at the debond front are used to predict debond growth. The model and techniques form the fundamental basis to develop accelerated aging tests and long-term reliability predictions for photovoltaic backsheets. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available