4.7 Article

Analysis of the degradation mechanism of ITO-free organic solar cells under UV radiation

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 121, Issue -, Pages 43-48

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2013.10.021

Keywords

Organic solar cell; UV radiation; Long-term stability; Degradation; PEDOT:PSS; Sheet resistance

Funding

  1. Federal Ministry of Education and Science (BMBF) [03EK3505H]
  2. European Union [286605]
  3. Heinrich Boll Stiftung, Germany

Ask authors/readers for more resources

This work reports on the stability of encapsulated ITO-free bulk heterojunction organic solar cells (BHJ-OSC) under UV radiation in ambient air with the layer sequence Cr/Al/Cr/photoactive layer (PAL)/poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT:PSS)/metal-grid. The PAL consisted of poly(3-hexylthiophene) (P3HT) as a donor and (6,6)-phenyl-C-60 butyric acid methyl ester (PCBM) as an acceptor. BHJ-OSC with this setup showed remarkable stability under continuous illumination (1000 W/m(2)) with a low UV content. In contrast, the devices degraded significantly under UV radiation which was characterized by a reduction in fill factor and short-circuit current density. Additional experiments revealed an increase of the sheet resistance of the PEDOT:PSS layer which was interestingly much more pronounced in pure PEDOT:PSS samples as compared to samples where a PAL was deposited underneath. In addition, current extraction by linear increasing voltage (CELIV) measurements indicated a decrease of the effective charge carrier mobility of the PAL Numerical simulations based on the experimentally determined parameters showed good agreement of the solar cell performance as a function of UV exposure duration. This suggests that the increase of the sheet resistance of the polymeric hole contact and to a lesser extent the change of the effective mobility of the PAL are the main factors governing the deterioration of the photovoltaic performance upon UV exposure. A comparison to devices with a setup ITO/ZnO/PAL/PEDOT:PSS and a full metallization showed clearly improved UV stability, although the absorption of UV in the PAL is very similar. This further supports our interpretation that the degradation of the PAL plays a very minor role. The issue with the degradation of the PEDOT:PSS can easily be solved by incorporating an UV-filter into the device or preferably the use of UV-stabilized PEDOT:PSS formulations. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available