4.7 Article

High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 101, Issue -, Pages 51-56

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2012.02.028

Keywords

Phase change materials; Thermal energy storage; Thermal conductivity; Building energy consumption; Radiant floor heating system

Funding

  1. National Research Foundation of Korea
  2. Ministry of Education, Science and Technology [2011-0004181]

Ask authors/readers for more resources

The building sector is known to make a large contribution to total energy consumption and CO2 emissions. Phase change materials (PCMs) have been considered for thermal energy storage in buildings. The aim of this study was to improve the thermal conductivity of PCMs applicable as building materials using a radiant floor heating system. Using exfoliated graphite nanoplatelets (xGnP), composite PCMs were prepared by mixing and melting techniques for high dispersibility, thermal conductivity and latent heat storage. xGnP of 3 and 5 wt% was added to three types of liquid pure PCMs (octadecane, hexadecane and paraffin) with different melting points. The composite PCMs loaded with xGnP were characterized by using the SEM technique. The thermal properties of the composite PCM loaded with xGnP were determined by thermal conductivity analysis and DSC analysis. SEM morphology showed homogenous and ordered dispersion of xGnP in the three types of PCMs. The thermal conductivity of composite PCMs was increased with the xGnP loaded contents. The DSC results showed that the melting temperature and latent heat of the composite PCMs loaded with xGnP was maintained. The latent heat of composite PCMs slightly decreases when loading with xGnP. As a result, composite PCMs loaded with xGnP can be considered as energy saving building materials for a residential building using a radiant floor heating system. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available