4.7 Article

Light-induced degradation of the P3HT-based solar cells active layer

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 95, Issue 5, Pages 1315-1325

Publisher

ELSEVIER
DOI: 10.1016/j.solmat.2010.09.021

Keywords

P3HT; PCBM; Organic solar cells; Photochemical stability; Absorbance; Morphology

Ask authors/readers for more resources

We report on the effects of long-term artificial accelerated ageing on the active layer of organic solar cells in the absence of oxygen. The samples were composed of a bulk heterojunction formed by poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C-61 butyric acid methyl ester (PCBM) deposited on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). First, a set of experiments was performed to study the modifications resulting from prolonged exposure to UV-vis light. A gradual decrease in absorbance was recorded, and TEM results clearly indicated that the initial morphology was unstable upon long irradiation times. Second, we revealed that the annealing temperature of PEDOT:PSS strongly influenced the degradation of the active layer. Indeed, an increase in the PEDOT:PSS annealing temperature resulted in an important improvement in stability. Third, a comparison was made between different active layers obtained by changing the P3HT type, polymer:fullerene weight ratio and solvent nature. As expected, the polymer:fullerene weight ratio was shown to significantly impact the degradation kinetics. The ageing effects on the photovoltaic properties were then explored, and extrapolation of the data to outdoor exposure is also discussed. (C) 2010 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available