4.7 Article Proceedings Paper

Assessment of absorber composition and nanocrystalline phases in CuInS2 based photovoltaic technologies by ex-situ/in-situ resonant Raman scattering measurements

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 95, Issue -, Pages S83-S88

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2010.11.014

Keywords

CuIn(S,Se)(2); Raman scattering; Thin film chalcopyrite technologies

Ask authors/readers for more resources

This work describes the use of quasi-resonant Raman scattering measurements for the assessment of chemical composition and nanocrystalline phases in CuInS2 based photovoltaic technologies. Raman spectra measured in S-rich CuIn(S,Se)(2) layers at a fixed wavelength of 785 nm show a strong increase in the intensity of the peaks that are related to the quasi-resonant excitation of the corresponding vibrational modes. The spectra measured at these conditions are characterised by the presence of seven bands that have been identified with four first order peaks in the 200-400 cm(-1) spectral region and three second order peaks in the 550-750 cm(-1) spectral region. These spectra are strongly sensitive to changes in the composition of S-rich CuIn(Se,S)(2) alloys. On the other hand, the strong increase in the intensity of the peaks allows the development of in-situ measurements for real time process monitoring. As an example of this application, Raman spectra have been measured at real time conditions during the growth of colloidal CuInS2 nanocrystals that are being developed for the fabrication of low cost solar cells. The data obtained corroborate the potential of quasi-resonant Raman scattering measurements for the development of ex-situ and in-situ quality control and process monitoring tools in thin film chalcopyrite photovoltaic technologies. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available