4.7 Article

New amorphous small molecules-Synthesis, characterization and their application in bulk heterojunction solar cells

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 95, Issue 8, Pages 2272-2280

Publisher

ELSEVIER
DOI: 10.1016/j.solmat.2011.03.040

Keywords

Solution process; Amorphous small molecules; Organic solar cells

Funding

  1. State Key Development Program for Basic Research of China [2009CB623605]
  2. National Natural Science Foundation of China [20874035]
  3. 111 Project [B06009]
  4. Project of Jilin Province [20080305]

Ask authors/readers for more resources

We successfully synthesized a series of novel solution processible small molecules (2TAPM, 4TAPM and 2BTAPM) consisting of electron-accepting unit (2-pyran-4-ylidenemalononitrile) (PM) and electron-donating unit (Triphenylamine and different thiophene units). Differential scanning calorimetry (DSC) measurement indicates that these small molecules are amorphous. UV-vis absorption spectra show that the combination of PM with moieties having gradually increased electron-donating ability results in an enhanced intramolecular charge transfer (ICT) transition, leading to an extension of the absorption spectral range and a reduction of the band gap of the molecules. Both cyclic voltammetry measurement and theoretical calculations show that the highest occupied molecular orbital (HOMO) energy levels of the molecules could be fine-tuned by changing the electron-donating ability of the electron-donating moieties. The bulk heterojunction (BHJ) photovoltaic devices with a structure of ITO/PEDOT:PSS/small molecules:PC71BM/LiF/Al were fabricated by using the small molecules as donors and (6,6)-phenyl C-71-butyric acid methyl ester (PC71BM) as acceptor. Power conversion efficiencies of 1.76% and 2.47% were achieved for the photovoltaic devices based on 2TAPM:PC71BM and 4TAPM:PC71BM under simulated air mass 1.5 global irradiation (100 mW/cm(2)), respectively. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available