4.7 Article

Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 95, Issue 8, Pages 2194-2199

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2011.03.023

Keywords

Al doped ZnO (AZO); ZnO; TiO(x); Sol-gel synthesis; Inverted Organic Solar cells; Charge selective extraction layer

Ask authors/readers for more resources

Inverted bulk-heterojunction solar cells have recently captured high interest due to their environmental stability as well as compatibility to mass production. This has been enabled by the development of solution processable n-type semiconductors, mainly TiO(2) and ZnO. However, the device performance is strongly correlated to the electronic properties of the interfacial materials, and here specifically to their work function, surface states as well as conductivity and mobility. It is noteworthy to say that these properties are massively determined by the crystallinity and stoichiometry of the metal oxides. In this study, we investigated aluminum-doped zinc oxide (AZO) as charge selective extraction layer for inverted BHJ solar cells. Thin AZO films were characterized with respect to their structural, optical and electrical properties. The performance of organic solar cells with an AZO electron extraction layer (EEL) is compared to the performance of intrinsic ZnO or TiO(x) EELs. We determined the transmittance, absorbance, conductivity and optical band gap of all these different metal oxides. Furthermore, we also built the correlations between doping level of AZO and device performance, and between annealing temperature of AZO and device performance. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available