4.7 Article

Properties of n-type polycrystalline silicon solar cells formed by aluminium induced crystallization and CVD thickening

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 94, Issue 11, Pages 1869-1874

Publisher

ELSEVIER
DOI: 10.1016/j.solmat.2010.06.031

Keywords

Polycrystalline silicon; Aluminium induced crystallization; n-Type; Solar cells

Funding

  1. ANR

Ask authors/readers for more resources

Large-grained, n(+)n-type polycrystalline silicon (poly-Si) films were obtained on alumina substrates by combining the aluminium induced crystallization (AlC) process of amorphous silicon and chemical vapour deposition (LPCVD) at high temperature (1000 degrees C) for the epitaxial thickening. The n(+) seed layer was obtained by phosphorus doping of the AlC layer. The electron backscattering diffraction (EBSD) technique was used for the crystallographic analysis of the poly-Si thin films. Seed layers with an average grain size of 7.6 mu m were obtained on alumina substrates by exchange annealing at 475 degrees C for 6 h. Heterojunction emitter (HJE) solar cells were fabricated on such layers and their characteristics were monitored. IQE measurements show that n-type material based solar cells led to a much higher current collection over a large part of the spectrum compared to p-type cells. Accordingly a high effective diffusion length of about 2 mu m for n-type heterojunction solar cells was obtained while it is about 0.9 mu m for the p-type cell. As a result, the first n-type solar cells showed efficiencies above 5%, which is a very promising result considering that no optimization nor texturing have been applied so far. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available