4.7 Article

Highly conductive composites made of phase change materials and graphite for thermal storage

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 92, Issue 6, Pages 603-613

Publisher

ELSEVIER
DOI: 10.1016/j.solmat.2007.11.010

Keywords

phase change materials (PCM); graphite; latent heat storage; simulation

Ask authors/readers for more resources

Conventional phase change materials (PCMs) are already well known for their high thermal capacity and constant working temperature for thermal storage applications. Nevertheless, their low thermal conductivity (around 1 W m(-1) K-1) leads to low and decreasing heat storage and discharge powers. Up to now, this major drawback has drastically inhibited their possible applications in industrial or domestic fields. The use of graphite to enhance the thermal conductivity of those materials has been already proposed in the case of paraffin but the corresponding applications are restricted to low-melting temperatures (below 150 C). For many applications, especially for solar concentrated technologies, this temperature range is too low. In the present paper, new composites made of salts or eutectics and graphite flakes, in a melting temperature range of 200-300 degrees C are presented in terms of stability, storage capacity and thermal conductivity. The application of those materials to thermal storage is illustrated through simulated results according to different possible designs. The synergy between the storage composite properties and the interfacial area available for heat transfer with the working fluid is presented and discussed. (c) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available