4.7 Article

An explanation for the high stability of polycarboxythiophenes in photovoltaic devices- A solid-state NMR dipolar recoupling study

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 92, Issue 7, Pages 772-784

Publisher

ELSEVIER
DOI: 10.1016/j.solmat.2007.11.008

Keywords

polymer solar cells; stability; P3MHOCT; P3CT; solid state NMR; dipolar recoupling; hydrogen-bonded networks

Ask authors/readers for more resources

Continuous operation of a polymer photovoltaic device under accelerated conditions for more than 1 year has been demonstrated (8760h at 72 degrees C, 1000Wm(-2), AM 1.5, under vacuum). Formation of hydrogen-bonded networks is proposed to be responsible for the long lifetime and high stability observed in photovoltaic devices employing polythiophene substituted with carboxylic-acid moieties under oxygen free conditions. H-1 and C-13 solid-state NMR, IR, and ESR spectroscopy of unmodified and isotopically labeled polythiophenes were studied. Distances between the isotopically labeled carboxylic acid carbon atoms were measured by C-13 solid-state magic-angle-spinning (MAS) NMR using symmetry-based double-quantum (2Q) dipolar recoupling. This revealed the presence of C-13-C-13 distances of 3.85 angstrom, which correspond to the C-C distance in hydrogen-bonded carboxylic acid dimers. In spite of the presence of carboxylic groups in the polymer as demonstrated by C-13 CP/MAS NMR and IR spectroscopy, the absence of carboxylic protons in solid state H-1 NMR spectra indicate that they are mobile. We link the extraordinary stability of this system to the rigid nature, cross-linking through a hydrogen-bonded network and a partially oxidized state. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available