4.4 Article

Shaking table test on reinforcement effect of partial ground improvement for group-pile foundation and its numerical simulation

Journal

SOILS AND FOUNDATIONS
Volume 52, Issue 6, Pages 1043-1061

Publisher

JAPANESE GEOTECHNICAL SOC
DOI: 10.1016/j.sandf.2012.11.020

Keywords

Group-pile foundation; Shaking table test; Seismic enhancement; Partial ground improvement; Soil-pile interaction; Numerical test

Ask authors/readers for more resources

In this paper, particular attention was paid to the seismic enhancement effect of group-pile foundation with partial ground improvement method that is used for existing pile foundations in practical engineering. A model test on a full system with a superstructure, a nine-pile foundation and a sandy ground was conducted with the shaking table test device. The model pile is made from aluminum and the model ground is made from Toyoura Sand. The shaking table test device is 120 cm in width and 160 cm in length. The maximum acceleration is 1 g and the maximum displacement is 5 cm. The maximum payload is 16 kN and the highest frequency is 10 Hz. The model ground is carefully prepared to obtain a ground with controllable unified density. Before the shaking table test, the pattern of the partial ground improvement for an existed group-pile foundation is carefully selected using numerical tests with a 3D elastoplastic static finite element analysis. In the analysis, the nonlinear behavior of ground and piles are described by the cyclic mobility model (Zhang et al., 2007) and the axial force dependent model (AFD model) proposed by Zhang and Kimura (2002) can take into consideration of axial-force dependency in the nonlinear moment curvature relations. The applicability of the numerical analysis has been verified in previous works by comparing the numerical results with a real-scale field tests (K osa eta!,, 1998). Based on the results from the numerical tests on seismic enhancement effect of group-pile foundation with ground improvement, an optimum pattern of partial ground improvement of an existing pile foundations has been picked out for shaking table test. A numerical analysis using the program DBLEAVES (Ye, 2007) is also conducted for the same optimum pattern for comparison purposes. The effectiveness of the partial ground improvement method has been proved by both the shaking table test and the numerical analysis. (C) 2012 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available