4.3 Article

Synthesis of nicotianamine and deoxymugineic acid is regulated by OsIRO2 in Zn excess rice plants

Journal

SOIL SCIENCE AND PLANT NUTRITION
Volume 54, Issue 3, Pages 417-423

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1111/j.1747-0765.2008.00259.x

Keywords

basic helix-loop-helix; deoxymugineic acid; nicotianamine; transcriptional factor; zinc excess

Ask authors/readers for more resources

Zinc (Zn) excess has significant toxicity to biological systems through metal-based cytotoxic reactions. Nicotianamine (NA) and deoxymugineic acid (DMA) are low-molecular-weight, high-affinity transition metal chelators. Studies have shown that NA may have a role in the tolerance of excess Zn. We show that a gene coding the iron (Fe)-regulated DNA-binding transcription factor (OsIRO2) and the downstream genes of OsIRO2, such as NA synthase, DMA synthase and the DMA-Fe3+ transporter, were induced in rice roots by excess Zn. Consistent with the expression of these genes, the amounts of endogenous NA, endogenous DMA and DMA secretion increased in the excess Zn roots. Although the Fe concentration in the excess Zn roots was much higher than that in the control, rice ferritin gene, OsFer1, was downregulated in Zn excess roots. OsIRT1, which is upregulated by Fe deficiency, was not induced in Zn excess roots, suggesting that OsIRO2 may not be induced simply by the Fe deficiency caused by excess Zn. The data indicate that the induction of OsIRO2 by excess Zn is responsible for the production of NA and DMA, which may play a role in maintaining cellular Zn availability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available