4.7 Article

Kinematic response of single piles for different boundary conditions: Analytical solutions and normalization schemes

Journal

SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
Volume 44, Issue -, Pages 183-195

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.soildyn.2012.09.011

Keywords

-

Funding

  1. Italian National Emergency Management Agency
  2. University of Patras [C.580]
  3. ReLUIS project Methods for risk evaluation and management of existing buildings

Ask authors/readers for more resources

Kinematic pile-soil interaction is investigated analytically through a Beam-on-Dynamic-Winkler-Foundation model. A cylindrical vertical pile in a homogeneous stratum, excited by vertically-propagating harmonic shear waves, is examined in the realm of linear viscoelastic material behaviour. New closed-form solutions for bending, displacements and rotations atop the pile, are derived for different boundary conditions at the head (free, fixed) and tip (free, hinged, fixed). Contrary to classical elastodynamic theory where pile response is governed by six dimensionless ratios, in the realm of the proposed Winkler analysis three dimensionless parameters suffice for describing pile-soil interaction: (1) a mechanical slenderness accounting for geometry and pile-soil stiffness contrast, (2) a dimensionless frequency (which is different from the classical elastodynamic parameter a(0)=omega d/V-s), and (3) soil material damping. With reference to kinematic pile bending, insight into the physics of the problem is gained through a rigorous superposition scheme involving an infinitely-long pile excited kinematically, and a pile of finite length excited by a concentrated force and a moment at the tip. It is shown that for long piles kinematic response is governed by a single dimensionless frequency parameter, leading to a unique master curve pertaining to all pile lengths and pile-soil stiffness ratios. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available