4.7 Article

Long-term manure amendments enhance neutral sugar accumulation in bulk soil and particulate organic matter in a Mollisol

Journal

SOIL BIOLOGY & BIOCHEMISTRY
Volume 78, Issue -, Pages 45-53

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2014.07.009

Keywords

Soil organic matter (SOM); Particulate organic matter (POM); Neutral sugar; Plant- and microbial-derived compounds; Long-term manure application

Categories

Funding

  1. National Natural Science Foundation of China [41171199]
  2. Chinese Academy of Sciences [XDA05050501]

Ask authors/readers for more resources

Manure application generally increases soil organic matter (SOM) and particulate organic matter (POM) content in soil. Free and occluded POM (fPOM and oPOM) can be quantified by combining density and ultrasonic dispersion approaches, but it remains unclear which fraction of POM is more responsive to manure application, and whether manure treated soils have a more pronounced effect on POM content than unmanured soils (no or chemical fertilizer treated soils). Because neutral sugars in POM can be attributed to either plant- or microbial-derived compounds, we analyzed the pattern and ratio of different neutral sugars to clarify effects of different fertilizations on quality of POM in a study over two decades. Soil samples (0-20 cm) were collected from six fertilization treatments in a 25-year long fertilization experiment including no fertilizer (CK), low manure (M1), high manure (M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (M1NPK, M2NPK). Our results showed that manure application generally led to higher organic carbon concentrations in bulk soil (M2NPK > M2 > M1NPK > M1 > CK > NPK), fPOM (M2NPK > M2 > M1 > M1NPK > NPK > CK) and oPOM (M1 > M2 > M1NPK > M2NPK > NPK > CK), respectively. As compared with unmanured treatments, manure amendments induced 48, 21 and 107% greater increases on average in neutral sugar concentrations in bulk soil, fPOM and oPOM, respectively. More plant-derived organic compounds were enriched in fPOM than oPOM and bulk soil, and the enrichment was more pronounced in manure treated soils than the unmanured soils. This study suggests that long-term use of manure enhanced microbial routing of specific monosaccharides into different POM fractions. Clearly, manure amendments improved labile SOM content and SOM quality in the Mollisol thus maintaining soil productivity over decades. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available