4.7 Article

The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China

Journal

SOIL BIOLOGY & BIOCHEMISTRY
Volume 57, Issue -, Pages 411-417

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2012.10.026

Keywords

Soil aggregates; Arbuscular mycorrhizal hyphae; Glomalin-related soil protein; Severing hyphae

Categories

Funding

  1. Natural Science Foundation of China [40701085, 40971168]

Ask authors/readers for more resources

Soil aggregation is a crucial soil property that affects a wide range of physical and chemical processes in soil ecosystems. Arbuscular mycorrhizal (AM) association is recognised as an important promoter of soil aggregation through the action of individual roots, mycelia and an insoluble, glue-like and hydrophobic proteinaceous substance, which is (at least partly) of AM fungi origin, named glomalin-related soil protein. Considering the increasing application of commercial AM inoculants, we addressed how the soil aggregates respond to the hyphal functions of AM inoculation in the field with a resident AM community. To this end, we introduced a new system in which the hyphae were separated by mesh and regular rotation to break the ingrowing hyphae as a control and to demonstrate the causal link between the hyphae and soil aggregates under conditions simulating natural parameters. The results showed the following: (i) the hyphal length was positively correlated with the mean weight diameter (r = 0.384, P < 0.05), geometric mean diameter (r = 0.257, 0.05 < P < 0.10) and easily extractable glomalin (r = 0.296, P < 0.05); (ii) the colonisation rate of the roots in the cores was increased by constantly severing the extraradical mycelium and (iii) the colonisation rate of the control plant roots (approx. 10%) was significantly lower compared to those inoculated with AM fungi (ranging from 34% to 54%). It was concluded that the hyphal networks of AM inoculations can promote the formation and stability of soil aggregates under conditions that closely simulate those occurring in nature. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available