4.7 Article

Biological carbon assimilation and dynamics in a flooded rice - Soil system

Journal

SOIL BIOLOGY & BIOCHEMISTRY
Volume 48, Issue -, Pages 39-46

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2012.01.009

Keywords

C-14 continuous labelling; Rice (Oryza sativa L.); Rhizodepositon; Photosynthesized carbon; Soil organic carbon; Decomposition

Categories

Funding

  1. National Natural Science Foundation of China [40901124, 41090283]
  2. Chinese Academy of Sciences [XDA05050505, ISACX-LYQY-QN-1103]
  3. CAS/SAFEA International Partnership Program for Creative Research Teams [KZCX2-YW/-T07, 20100491005-8]

Ask authors/readers for more resources

Information on the input, distribution and fate of photosynthesized carbon (C) in plant-soil systems is essential for understanding their nutrient and C dynamics. Our objectives were to: 1) quantify the input to, and distribution of, photosynthesized C by rice into selected soil C pools by using a C-14 continuous labelling technique and 2) determine the influence of the photosynthesized C input on the decomposition of native soil organic carbon (SOC) under laboratory conditions. The amounts of C-14 in soil organic C (SOC14) were soil dependent, and ranged from 114.3 to 348.2 mg C kg(-1), accounting for 0.73%-1.99% of total SOC after continuous labelling for 80 days. However, the mean SOC14 concentrations in unplanted soils (31.9 -64.6 mg kg(-1)) were accounted for 21.5% of the rice-planted soils. The amounts of C-14 in the dissolved organic C (DOC14) and in the microbial biomass C (MBC14), as percentages of SOC14, were 2.21%-3.54% and 9.72%-17.97%, respectively. The DOC14 and MBC14 were 6.72%-14.64% and 1.70%-7.67% of total DOC and MBC respectively after 80-d of rice growth. At 80-d of labelling, the SOC14 concentration was positively correlated with the MBC14 concentration and rice root biomass. Rice growth promotes more photosynthesized (newly-derived) C into soil C pools compared to unplanted soils, reflecting the release of root exudates from rice roots. Laboratory incubation of photosynthesized (plant-derived) C in soil decreased the decomposition of native SOC (i.e. a negative priming effect), in some, but not all cases. If this negative priming effect of the new C on native SOC also occurs in the field in the longer term, paddy soils will probably sequester more C from the atmosphere if more photosynthesized C enters them. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available